Measurements of PM_{2.5} During Kharif Rice Crop Residue Burning (2022-2023) By Low-Cost Sensor Network in Punjab, Haryana and Delhi-NCR

Poonam Mangaraj

Research Institute for Humanity and Nature, Japan

Author list (excluding presenting author)

Yutaka Matsumi, Tomoki Nakayama, Akash Biswal, Kazuyo Yamaji, Hikaru Araki, Natsuko Yasutomi, Masayuki Takigawa, Prabir K. Patra, Sachiko Hayashida, Akanksha Sharma, A. P. Dimri, Surendra K. Dhaka, Manpreet S. Bhatti, Mizuo Kajino, Sahil Mor, Khaiwal Ravindra, Sanjeev Bhardwaj, Vimal J. Vazhathara, Ravi K. Kunchala, Tuhin K. Mandal, Prakhar Misra, Tanbir Singh, Kamal Vatta, Suman Mor

Abstract

Open crop residue burning (CRB) stands as a formidable environmental challenge, particularly for exacerbating air pollution episodes during the harvest seasons (October-November) in northwest India. The Aakash Project at RIHN is aiming to establish a scientific basis to map the effects of CRB on the air quality of the Delhi-National Capital Region (NCR). Uncertainties persist regarding the direct association between CRB practices in Punjab and Haryana and PM_{2.5} levels in Delhi-NCR, hindering effective policymaking for air pollution mitigation in the megacity with a population of over 70 million. We deployed extensive field campaigns using a network of 30 Compact & Useful PM_{2.5} Instrument with Gas sensors (CUPI-Gs) covering Punjab, Haryana and Delhi-NCR in both 2022 (Singh et al., Sci. Rep., 2023) and 2023. Continuous observations revealed a significant decline in fire detection counts (FDCs) by 31-37% in Punjab and Haryana from 2022 to 2023, and thus the PM_{2.5} concentrations, which is in stark contrast to about 20% increase over the Delhi-NCR. A further analysis by combining PM_{2.5} and CO suggested that local incomplete combustion dominated emissions of air pollutants in Delhi-NCR while direct PM25 emissions from CRB dominated in Punjab and Haryana. Our observations clearly captured the effects of the Graded Response Action Plan (GRAP) and regional meteorological conditions on PM_{2.5} variations in Delhi-NCR due to local emissions in comparison to long-range transport. The 24-hour-backward trajectory using HYSPLIT at three different altitudes revealed a transported PM_{2.5} plume over Delhi-NCR. The unique air quality measurements from a network of sites covering the urban and rural areas of northwest India are providing a holistic view of the origin of air pollution, to aid the policy of effective mitigation. We provide networked observations, meteorological analysis and transport model simulations of PM_{2.5} in near-real time during the CRB campaign 2023 (https://aakash-rihn.org/en/data-set/).

Early Career Scientist

YES, I am an early career scientist.

IGAC Activities

AMIGO: Analysis of eMIssions usinG Observations, BBURNED: Biomass Burning Uncertainty: ReactioNs, Emissions and Dynamics, GEIA: Global Emissions Initiative

IGAC Regional Working Groups

Japan National Committee